基于多模态大模型的智能视频审核员

一、项目结构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
video_processing/
├── config.py # 配置信息(如API密钥、路径等)
├── database/ # 数据库相关文件
│ ├── models.py # ORM模型定义
│ └── utils.py # 数据库连接与初始化工具
├── processors/ # 各个处理模块
│ ├── video_processor.py # 视频处理(提取关键帧、转换音频)
│ ├── text_analyzer.py # 文本分析模块
│ ├── image_analyzer.py # 图像分析模块
│ └── status_updater.py # 状态汇总与清理
├── utils/ # 辅助工具函数
│ ├── file_utils.py # 文件操作相关
│ └── log_utils.py # 日志记录
└── main.py # 主程序入口,启动所有线程

二、数据库表设计(SQLite示例)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# database/models.py
from sqlalchemy import create_engine, Column, Integer, String, Boolean, DateTime
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class VideoTask(Base):
__tablename__ = 'video_tasks'

id = Column(Integer, primary_key=True)
video_path = Column(String(255), nullable=False) # 原始视频路径
created_at = Column(DateTime, nullable=False)
processed_text = Column(Boolean, default=False)
text_result = Column(String(255)) # 文本分析结果
analyzed_images = Column(Boolean, default=False)
image_violations = Column(Integer, default=0) # 违规图片数量
final_status = Column(String(50), nullable=True) # 最终状态(如"安全"/"违规")

三、核心代码实现

1. 配置文件 (config.py)

1
2
3
4
5
6
7
8
VIDEO_DIR = 'videos/'
TEXT_OUTPUT_DIR = 'text_files/'
IMAGE_OUTPUT_DIR = 'image_frames/'
DB_PATH = 'sqlite:///video_tasks.db'

# API配置(假设使用OpenAI API)
API_KEY = "your_openai_api_key"
MODEL_NAME = "gpt-3.5-turbo"

2. 数据库初始化 (database/utils.py)

1
2
3
4
5
6
7
8
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from .models import Base

def init_db():
engine = create_engine(config.DB_PATH)
Base.metadata.create_all(engine)
return sessionmaker(bind=engine)()

3. 视频处理模块 (processors/video_processor.py)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import os
import time
from config import *

class VideoProcessor:
def __init__(self):
self.db_session = init_db()

def process_video(self, video_id):
task = self.db_session.query(VideoTask).get(video_id)
if not task:
return

# 提取关键帧(每秒1张,假设24fps)
vidcap = cv2.VideoCapture(task.video_path)
success,img = vidcap.read()
count = 0
while success:
if count % 24 == 0: # 每隔24帧保存一张
img_path = os.path.join(IMAGE_OUTPUT_DIR, f"{video_id}_{count}.jpg")
cv2.imwrite(img_path, img)
task.analyzed_images +=1
success,img = vidcap.read()
count +=1

# 转换音频为文本(伪代码)
text_content = self._audio_to_text(task.video_path)

with open(os.path.join(TEXT_OUTPUT_DIR, f"{video_id}.txt"), 'w') as f:
f.write(text_content)

task.processed_text = True
self.db_session.commit()

def _audio_to_text(self, video_path):
# 这里需要实现音频转文本的逻辑,比如使用SpeechRecognition库
return "Sample text content from audio"

4. 文本分析模块 (processors/text_analyzer.py)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import openai
from config import *

class TextAnalyzer:
def analyze_text(self, task_id):
with open(os.path.join(TEXT_OUTPUT_DIR, f"{task_id}.txt"), 'r') as f:
text = f.read()

# 调用API进行内容分析(示例逻辑)
response = openai.Completion.create(
engine=MODEL_NAME,
prompt=f"检测以下文本是否包含违规内容:\n\n{text}",
max_tokens=10
)

result = "安全"
if "违规" in response.choices[0].text:
result = "存在违规内容"

# 更新数据库状态
task = session.query(VideoTask).get(task_id)
task.text_result = result
task.processed_text = True
session.commit()

5. 图像分析模块 (processors/image_analyzer.py)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import torch
from torchvision import transforms
from PIL import Image

class ImageAnalyzer:
def __init__(self):
self.model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 示例模型

def analyze_images(self, task_id):
image_dir = os.path.join(IMAGE_OUTPUT_DIR, str(task_id))

violations = 0
for img_name in os.listdir(image_dir):
img_path = os.path.join(image_dir, img_name)

results = self.model(img_path) # 运行检测模型
if any('违规类别' in pred for pred in results.pandas().xyxy[0].name):
violations +=1

task = session.query(VideoTask).get(task_id)
task.image_violations = violations
task.analyzed_images = True
session.commit()

6. 主程序 (main.py)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from processors import VideoProcessor, TextAnalyzer, ImageAnalyzer
import threading

def main():
vp = VideoProcessor()
ta = TextAnalyzer()
ia = ImageAnalyzer()

# 启动监听线程(简化版)
while True:
tasks = session.query(VideoTask).filter_by(processed=False).all() # 假设未处理任务
for task in tasks:
vp_thread = threading.Thread(target=vp.process_video, args=(task.id,))
ta_thread = threading.Thread(target=ta.analyze_text, args=(task.id,))
ia_thread = threading.Thread(target=ia.analyze_images, args=(task.id,))

vp_thread.start()
ta_thread.start()
ia_thread.start()

if __name__ == "__main__":
main()
Donate
  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2023-2025 John Doe
  • Visitors: | Views:

请我喝杯茶吧~

支付宝
微信