基于RNN的文本生成模型

在本文中,我们将介绍如何使用循环神经网络(RNN)来构建一个文本生成模型。这个模型能够基于给定的文本数据生成新的、类似的文本。我们将使用莎士比亚的文本作为训练数据,并展示如何加载数据、准备数据、构建模型、训练模型以及使用模型生成新的文本。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense, Embedding
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical

# 读取数据
def load_data(filepath, maxlen=100):
with open(filepath, 'r', encoding='utf-8') as file:
text = file.read()

# 将文本转换为小写
text = text.lower()

return text, maxlen

# 准备数据
def prepare_data(text, maxlen, step=3):
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts([text])
sequences = tokenizer.texts_to_sequences([text])[0]

dataX, dataY = [], []
for i in range(0, len(sequences) - maxlen, step):
seq_in = sequences[i:i + maxlen]
seq_out = sequences[i + maxlen]
dataX.append(seq_in)
dataY.append(seq_out)

dataX = pad_sequences(dataX, maxlen=maxlen, padding='pre')

# 将输出转换为one-hot编码
num_classes = len(tokenizer.word_index) + 1
dataY = to_categorical(dataY, num_classes=num_classes)

return dataX, dataY, tokenizer

# 设置参数
filepath = 'D:\\XBY\\meaningway\\meaningway3\\shakespeare.txt' # 替换为你的莎士比亚文本文件路径
maxlen = 40
step = 3

# 加载和准备数据
text, maxlen = load_data(filepath, maxlen)
dataX, dataY, tokenizer = prepare_data(text, maxlen, step)

# 构建模型
model = Sequential()
model.add(Embedding(input_dim=len(tokenizer.word_index) + 1,
output_dim=50))
model.add(SimpleRNN(128, return_sequences=False))
model.add(Dense(len(tokenizer.word_index) + 1, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(dataX, dataY, epochs=200, batch_size=128, validation_split=0.1)

# 保存模型
model.save('simple_char_rnn.keras')

# 测试模型(生成文本)
def generate_text(model, tokenizer, seed_text, num_generate=100):
result = list(seed_text)
in_text = seed_text
for _ in range(num_generate):
sequence = tokenizer.texts_to_sequences([in_text])[0]
sequence = pad_sequences([sequence], maxlen=maxlen, padding='pre')
yhat = model.predict(sequence, verbose=0)
yhat = np.argmax(yhat)
result.append(tokenizer.index_word[yhat])
in_text += tokenizer.index_word[yhat]
return ''.join(result)

# 使用模型生成文本
seed_text = "romeo: " # 你可以改变这个种子文本
generated_text = generate_text(model, tokenizer, seed_text, num_generate=200)
print(generated_text)

运行结果
通过运行上述代码,你将能够生成类似于莎士比亚风格的文本。你可以尝试改变种子文本或调整模型参数来生成不同的内容。然而,此代码的瓶颈出现在150步左右,正确率趋近于0.7附近。因此输出的结果并不如人意。

Donate
  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2023-2025 John Doe
  • Visitors:846 | Views:1478

请我喝杯茶吧~

支付宝
微信